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Identification of reactive CpGs and RNA
expression in early COVID-19 through cis-
eQTM analysis reflecting disease severity
and recovery
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Multi-omics analyses of severe COVID-19 cases are crucial in deciphering the complex interplay
between genetic and epigenetic factors. Here, we present an analysis of Expression Quantitative Trait
Methylation (eQTM) to investigate the complex interplay of methylation and gene expression pattern
during the acute phase of severe COVID-19. We identified 16 differentially expressed genes and 30
nearby differentially methylated CpG sites. Six key genes—SRXN1, FURIN, IL18RAP, FOXO3,
GCNT4, and FKBP5—were either up-regulated or down-regulated near hypomethylated CpG sites.
These genes are associated with viral infiltration, immune activation, lung damage, and oxidative
stress-related multi-organ failure, which are the hallmarks of severe COVID-19. Interestingly, during
the recovery phase, methylation and gene expression levels returned to baseline, underscoring the
rapid and reversible nature of these molecular changes. These findings provide insight into the
dynamics of epigenetic and transcriptomic shifts according to the infectious stage, supporting
potential prognostic and therapeutic approaches for severe COVID-19.

The global impact of the coronavirus disease 2019 (COVID-19) has
underscored the urgent need to understand the more precise molecular
mechanisms underlying its clinical manifestations, particularly the factors
contributing to severe disease outcomes1. The clinical spectrum of COVID-
19 ranges from asymptomatic cases to severe respiratory failure, yet the
underlying molecular and omics drivers of these varied outcomes remain
elusive. COVID-19 can trigger a cytokine storm—an excessive immune
response characterized by the overproduction of cytokines—that results in
tissue damage and widespread inflammation, which are strongly linked to
severe disease2. In the most critical cases, the cytokine storm spreads to
multiple organs, ultimately causing multi-organ failure and death3.

In recent years, big-data-driven precision multi-omics approaches
have emerged as a powerful tool for dissecting the complex biological
interactions that underpin pathologies. By integrating multiple layers of
omics data, such as genomics, transcriptomics, and epigenomics, these
precision medicine approaches can be utilized to gain a comprehensive
understanding of disease mechanisms in instances, such as COVID-19.
DNA methylation, as the most common epigenetic modification, plays a
crucial role in regulating gene expression and can be influenced by infec-
tions, as well as other stressors4,5. Several studies have demonstrated that
epigenetic regulation plays a role in the severity of COVID-194,6–9. Pre-
viously, DNA methylation was considered relatively stable than other
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epigenetic modifications. However, recent studies have revealed that DNA
methylation can occur more rapidly than previously thought10. This is
particularly evident when cells are exposed to challenging environments,
such as infection caused by direct invasion of pathogens. RNA expression
analysis is themost informativemolecularmethodmeasuring the effect and
severity of infectious diseases, such as COVID-19, because it directly and
rapidly reflects the epigenetic changes caused by viral infection11. Therefore,
Expression Quantitative Trait Methylation (eQTM) analysis has been
successfully employed in several studies to investigate the relationship
between DNA methylation and gene expression12–14. However, despite its
potential, eQTM approaches have rarely been applied to investigate the
connection between DNA methylation and RNA expression in relation to
COVID-19 severity.

In this study, we employed a cis-eQTM analysis to investigate the
integrated patterns ofDNAmethylation andRNAexpression in 46 patients
with varying degrees of COVID-19 severity. Our objectivewas to determine
the molecular mechanisms associated with severe outcomes during the
acute phase of the disease and to assess the dynamic changes inmulti-omics
of thesemolecular signatures during the recovery phase. These observations
underscore the dynamic nature of epigenetic and transcriptomic changes in
COVID-19 progression and recovery, providing valuable insights into
potential healthcare and therapeutic targets formitigating severe outcomes.

Results
Dynamicsofgene-regulatingCpGsandgeneexpression levels in
COVID-19 severity
We analyzed blood-based multi-omic differences between severe-critical
(SC) andmild-moderate (MM) cases during the acute phase of infection in
46 patients hospitalized with COVID-19 (Fig. 1A). The clinical follow-up
period for all patients is presented in Fig. 1B. We confirmed their severity
status based on clinical lab values, including blood cell counts and inflam-
matory biomarker levels. Notably, SARS-CoV-2 viral load, as measured by
PCRcycle threshold (Ct) values formultiple gene targets (N,E, andR genes),
did not differ significantly between severity groups (Supplementary Fig. 1),

suggesting that differences in clinical outcomeswere not attributable to viral
burden alone but to host-intrinsic factors, including immune and epigenetic
responses.

Leave-one-out (LOO) analysis between SC and MM COVID-19
groups identified 648 hypermethylated and 1296 hypomethylatedCpG sites
in the severe disease. Cis-eQTM analysis further revealed that 732 of these
differentially methylated CpGs (113 hypermethylated CpGs and 619
hypomethylated CpGs) were correlated with 928 genes located within
1Mbp of the differentially methylated CpGs (DMCs). Transcriptome-wide
differential expression analysis identified 297 differentially expressed genes
(DEGs) between SC and MM COVID-19 groups that were consistently
observed in at least seven LOO iterations. Of these, 283 genes were up-
regulated and 14 down-regulated in the severe disease. The up-regulated
genes were enriched in pathways related to erythrocyte dynamics, innate
immune activation, platelet aggregation, and acetylcholine receptor sig-
naling (Supplementary Fig. 2A), whereas down-regulated genes were pre-
dominantly involved in DNA mismatch repair (MMR) pathway
(Supplementary Fig. 2B).

Integration ofmethylation and transcriptomic data through cis-eQTM
analysis refined these genes to 16 DEGs that were proximal to 30 DMCs
(Supplementary Table 1). Among these, 15 genes were up-regulated and a
single gene, GCNT4, was down-regulated. The overlap of these DEGs with
cis-eQTM loci indicates their expression is likely regulated by local
methylation status (Supplementary Table 1).

From the final set of cis-eQTM genes, six key genes and their ten
regulatory CpGs were selected for further analysis based on their previous
association with COVID-19 severity (Table 1). These genes are mechan-
istically linked to viral entry, immune regulation, andoxidative stress–major
hallmarks of severe disease. FURIN, SRXN1, and FKBP5, which were up-
regulated in the SC group, had strong negative correlations with their
associated CpG methylation levels (ρ = –0.602, –0.582 to –0.510, and
–0.551, respectively; P = 0.003, –0.004 to 0.021, and 0.009, respectively),
indicating that hypomethylation at these loci is linked to increased gene
expression. FOXO3 and IL18RAP also showed moderate inverse

Fig. 1 | Overall study design and follow-up blood sample collection for cis-eQTM
analysis in COVID-19 patients. AOverview of blood sampling and analysis design;
Themarker discovery cohort consisted of hospitalizedCOVID-19 patients, stratified
into Mild-Moderate (MM) (N = 37) and Severe-Critical (SC) (N = 9) groups, and
was used to identify severity-associated cis-eQTMmarkers. The comparison cohort
was composed of two independent reference groups: the ‘Convalescent group’
(N = 90) comprising individuals who recovered from COVID-19 and provided a
single blood sample 4 to 12 weeks post-infection, and the ‘Healthy Controls’ group

(N = 344), consisting of pre-pandemic individuals with no history of SARS-CoV-2
infection. BClinical follow-up duration of 46 Hospitalized COVID-19 patients. The
green and red points indicate MM and SC groups, respectively. Sample C19-
C014(*), excluded DEG analysis due to QC failure, was retained in methylation
analysis. In panel (A), the DNA, RNA, and blood icons were adapted from Flaticon
(https://www.flaticon.com), and the remaining elements were created using icons
available in Microsoft PowerPoint.
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correlations (ρ = –0.501 and –0.503; P = 0.025 and 0.024), suggesting
methylation-dependent regulation. In contrast, GCNT4, the only down-
regulated gene among the six, was positively correlated with methylation
levels (ρ = 0.528; P = 0.015).

We examined the distributions ofDNAmethylation and expression of
the six prioritized genes according to the infection phase.Meanmethylation
differences between MM and SC COVID-19 patients were statistically
significant for all ten CpGs (Supplementary Table 2). The convalescent
group,with samples collected from4 to 12weeks post-COVID-19 infection,
showed no significant differences in methylation levels compared to the
healthy control group (no viral infection at the time of collection). Notably,
the convalescent individuals from the MM group during the acute phase
presented no significant differences in theirmethylation profiles across nine
of the ten CpGs, with the exception of chr20:1166154 which regulates
SRNX1 expression (Fig. 2A, Supplementary Fig. 3). The pattern was mir-
rored at the gene expression level (Fig. 2B). All six key genes were either up-
ordown-regulated in theSCgroupcompared to theMMgroup.Threeof the
six genes (FURIN, SRXN1, and FKBP5) displayed significant differences in
mean expression only between severe patients compared to convalescent
individuals, but not between the MM and convalescent group (Supple-
mentary Table 3). As for markers with no previous report on COVID-19
severity, all 24 DMCs showed significantly altered methylated proportions
(Supplementary Fig. 3). Among ten DEGs with no past association with
COVID-19 severity, nine genes (exceptGABARAPL2) displayed significant
expression changes between MM and SC (Supplementary Fig. 4).

Leukocyte-adjusted cis-eQTM analysis reveals FKBP5methyla-
tion as a cell-type proportion-independent marker of severe
COVID-19
Acute SARS-CoV-2 infection disrupts circulating leukocyte distributions.
We repeated the cis-eQTM analysis while additionally adjusting for neu-
trophil, lymphocyte, monocyte, eosinophil, and basophil proportions
obtained from clinical blood counts. Consistent with this premise, a direct
comparison of the measured cell proportions revealed marked baseline
differences between severity groups: SC group exhibited a higher neutrophil
fraction and a lower monocyte fraction than MM group, whereas lym-
phocyte, eosinophil and basophil proportions were indistinguishable
(Supplementary Fig. 5). Around aweek after admission, the distributions of
all five cell types converged, and no between-group differences persisted
(Supplementary Fig. 5), indicating that the leukocyte imbalance is a

transitory feature from acute to recovery of the severe disease. After
incorporating these cell-type covariates, 29 of the original 30 CpG-gene
pairs lost statistical significance, demonstrating that most apparent
methylation-expression associations were confounded by cell-type hetero-
geneity. The single CpG that retained significance—chr6:36697843—
remained inversely associated with the expression of its neighboring gene,
FKBP5 (Fig. 2C, D; Supplementary Table 4). The persistence of the
chr6:36697843-FKBP5 cis-eQTM after rigorous adjustment establishes
FKBP5 as a cell-type proportion-independent epigenetic marker of disease
severity.

Resolution of acute-phase epigenetic alterations during COVID-
19 recovery
We next examined whether the severity-associated epigenetic alterations
observed during the acute phase were reversible during recovery. Specifi-
cally, we focused on the 30 CpGs and their corresponding 16 genes iden-
tified from the cis-eQTManalysis.Methylation and expressionprofiles were
examined in the hospitalized MM and SC groups, an independent con-
valescent cohort, and healthy controls. A heatmap of the methylation β-
values across all COVID-19 patients revealed a distinct group-wise
separation during the acute phase, with SC patients displaying pro-
nounced hyper- or hypo-methylation relative to MM group (Fig. 3A).
Notably, this severity-dependent stratification diminished substantially
during the recovery phase, and methylation profiles became more similar
between the SC and MM groups (Supplementary Fig. 6). To further assess
the restoration trajectory, we visualized the dynamics using principal
component analysis (PCA). The DNAmethylation PCA (Fig. 3B) revealed
that while MM group largely overlapped with convalescent and healthy
controls, the SC group exhibited only a partial shift, especially along PC2. In
the gene expression PCA (Fig. 3C), both SC andMMgroups shifted almost
completely toward the healthy cluster by 2–3 weeks post-infection, indi-
cating rapid normalization of transcriptional responses (Supplementary
Fig. 7). Taken together, although directional recovery was evident, the
residual separation of DNA methylation levels from the healthy baseline
implies that full epigenetic reversion may require a longer time course,
especially for those with severe disease.

To examine individual-level changes, we analyzed the methylation
difference between the acute and recovery phase in each SC group (Sup-
plementary Fig. 8). Most patients exhibited significant β-value shifts across
both hypermethylated and hypomethylated CpGs, consistent with the

Table 1 | Six key genes associated with the severity of COVID-19 in the acute phase

Direction of
methylation

Position Gene
symbol

Direction of
mRNA
expression

Correlation methylation
with mRNA expression

Association with COVID-19 References

Spearman’s ρ P-value

Hypo-
methylation

chr2:102143316 IL18RAP Up regulation −0.503 0.024 Immune response by mediating the activity of
interleukin-18

24–26

chr5:75320838 GCNT4 Down regulation 0.528 0.015 Respiratory failure 30

chr6:36697843 FKBP5 Up regulation −0.551 0.009 Stress-mediated immune response 31–35

chr6:108562564 FOXO3 Up regulation −0.501 0.025 Lung abnormalities, oxidative stress,
development and maturation of T and B
lymphocytes, secretion of inflammatory
cytokines

27–29

chr15:90100633 FURIN Up regulation −0.602 0.003 Viral infection 21–23

chr20:330120 SRXN1 Up regulation −0.582 0.004 Oxidative stress related to multi-organ
damage

16–20

chr20:654151 SRXN1 Up regulation −0.586 0.004

chr20:1166154 SRXN1 Up regulation −0.547 0.010

chr20:1467583 SRXN1 Up regulation −0.538 0.012

chr20:1631771 SRXN1 Up regulation −0.510 0.021

Columns indicate the direction of DNA methylation change (hypo- or hypermethylation); CpG site genomic position (hg38); associated gene symbol; direction of mRNA expression change (up- or
downregulation); direction of correlation between DNA methylation and gene expression, Spearman’s correlation coefficient (ρ), and associated P-value from cis-eQTM analysis; previously reported
associations of each gene with COVID-19 and relevant references.
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overall trend of epigenetic normalization. One patient (C19-C058) pre-
sented an exception. Unlike other patients in the SC group, this patient
showed virtually no methylation change between two time points. Clinical
metadata indicated that C19-C058 was classified as “Critical”, had a high
Charlson Comorbidity Index (CCI) (CCI = 5), and remained on oxygen
therapy at the time of recovery-phase blood collection.

Discussion
Using early‑phase whole blood multi-omics from clinically well-
characterized COVID‑19 patients, we mapped CpG‑to‑transcript links
with cis‑eQTM analysis and uncovered a focused set of “reactive” CpGs
whose methylation shifts reflected both disease severity and subsequent
recovery. During the acute phase, coordinated hypo‑ or hyper‑methylation

Fig. 2 | Multiomic Profiling of Six Key cis-eQTM Loci Reveals COVID-19
Severity-Associated Methylation and Gene Expression Changes Across the
Infection Timeline. A, C DNA methylation levels (% methylated CpGs) at repre-
sentative cis-eQTM sites, stratified by clinical group: Healthy controls (n= 310), Mild-
Moderate (acute phase; n= 37), Severe-Critical (acute phase; n= 9), and Convalescent
individuals (n= 90). Panel A presents five cell-type dependent cis-eQTM CpGs, whereas
panel C illustrates a cell-type independent CpG. B, D) Gene expression levels (VST
count) for the matched loci are displayed in panels B (cell-type proportion dependent)

and D (cell-type proportion independent) across clinical group: Healthy controls
(n= 35), Mild-Moderate (acute phase; n= 36), Severe-Critical (acute phase; n= 9), and
Convalescent individuals (n= 90). Boxplots display the median, interquartile range
(IQR), and individual data points. Statistical significance was evaluated using Welch’s t-
test for methylation and the Wilcoxon rank-sum test for gene expression, with nominal
P-values. Significance thresholds are indicated as follows: ns (P ≥ 0.05), *(P < 0.05),
** (P < 0.01), *** (P < 0.001), **** (P < 0.0001). VST variance-stabilizing
transformation.
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at these sites corresponded to sharp transcriptional changes that dis-
tinguished severe‑critical from mild-moderate cases. After correcting for
transient leukocyte imbalances, only oneCpG–RNApair,FKBP5, remained
independently associated with severity, highlighting it as a core epigenetic
signal rather than a by‑product of immune‑cell redistribution. Longitudinal
follow‑up demonstrated that both methylation and gene expression at the
reactive loci returned to baseline within 4–12 weeks, underscoring
the dynamic and largely reversible nature of COVID‑19‑induced
epigenetic programming. These findings establish a compact, cell‑type
composition–independent CpG-RNA signature that captures the trajectory
from acute pathology to convalescence, providing possible prognostic bio-
markers with mechanistic insight pertaining to host response and recovery
during COVID-19.

By distinguishing between severe and mild cases based on oxygen
therapy and intensive care unit (ICU) admission, we explored the
molecular underpinnings associated with distinct clinical trajectories.
Although there were only ten severe cases in this study, they represented
27% of the data, comparable to the proportion reported in previous
large-scale studies. For example, a February 2020 study of 72,314
COVID-19 cases in China found that the majority (81%) of patients
experienced mild to moderate symptoms, while 14% suffered from

severe respiratory issues, and 5% progressed to critical conditions,
including respiratory failure15.

This study is among the first to apply cis-eQTM analysis for dissecting
gene regulatory programs linked to COVID-19 severity. We identified a
distinct pattern of hypomethylation and concurrent upregulation of six
genes: SRXN1, FURIN, IL18RAP, FOXO3, GCNT4, and FKBP5. These genes
are not only epigenetically regulated but also biologically implicated in
known pathogenic mechanisms which are recognized as hallmarks of
COVID-19 severity. Notably, SRXN1, which was hypomethylated and up-
regulated in severe cases across five distinct CpG loci, encodes Sulfiredoxin 1,
a critical antioxidant mitigating reactive oxygen species (ROS) damage. Its
dysregulation amplifies oxidative stress and has been repeatedly reported to
be highly expressed in both blood and lung tissues of severe COVID-19
patients16–20. FURIN, another gene up-regulated in severe cases, facilitates
viral entry by cleaving the S1/S2 junction of the SARS-CoV-2 spike protein21.
Its expression correlates with disease progression and has been identified as a
potential target for antiviral therapy22,23. Our results also revealed significant
upregulation of IL18RAP and FOXO3 in severe COVID-19 cases—genes
that are mechanistically linked to hyper-inflammatory responses and
respiratory dysfunction. IL18RAP, a key mediator of IL-18 signaling, likely
contributes to excessive immune activation and cardiopulmonary

Fig. 3 | Multiomic Landscape of COVID-19 Recovery in Mild-Moderate and
Severe-Critical Groups. A Heatmap depicting DNA methylation profiles of cis-
eQTM markers in COVID-19 patients across infection phases (acute vs. recovery)
and severity groups (Mild-Moderate vs. Severe-Critical). Differentially methylated
CpG sites are indicated by color: hypermethylated sites are shown in red and
hypomethylated sites in blue. Infection phases are represented as acute (pink) and
recovery (light blue), while severity groups are differentiated by color: Mild-

Moderate (dark green) and Severe-Critical (dark red). The β-value scale, ranging
from 0 to 100, indicates the proportion of methylation at each CpG site. B Principal
component analysis (PCA) of DNA methylation restoration between the acute and
recovery phases in COVID-19 patients and healthy controls. C PCA of gene
expression restoration between acute and recovery phases in COVID-19 patients.
Arrows track group-level transitions, with ellipses denoting 3 standard deviations
from the group mean. Methyl. Status Methylation Status.
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complications through inflammasome-driven IL-18 release, a pathway
implicated in macrophage activation syndrome and multi-organ failure24–26.
In parallel, FOXO3, which regulates immune balance and oxidative stress,
was associated with increased oxygen demand and inflammatory lung injury,
suggesting that its overexpression may exacerbate pulmonary damage in
severe disease27–29.

Interestingly, GCNT4 was the only gene found to be epigenetically
downregulated in severe patients. A prior proteomic study reported its
elevation in respiratory failure among severe COVID-19 cases30. This dis-
crepancy may reflect differences in regulatory control between the tran-
scriptome and proteome or patient cohort characteristics.

To account for the known shifts in immune cell proportions during
acute infection, such as neutrophilia and lymphopenia, we repeated the cis-
eQTM analysis while adjusting for estimated immune cell-type proportion.
Most CpG–gene associations lost significance following this correction,
suggesting that they were biased by inflammation-induced cell redistribu-
tion. The persistence of the FKBP5 association after cell-type adjustment
suggests that its regulation may reflect a cell-intrinsic epigenetic signal,
strongly relevant to the pathophysiology of severe COVID-19. FKBP5
encodes FKBP51, an Hsp90 co‑chaperone that attenuates glucocorticoi-
d‑receptor (GR) signaling31,32. By modulating GR sensitivity it fine‑tunes
hypothalamic‑pituitary‑adrenal (HPA) feedback to stress and intersects
with NF‑κB/RIG‑I pathways that shape innate‑immune and inflammatory
responses33,34. Transcriptomic studies show FKBP5 up‑regulation in
corticosteroid‑treated airway epithelium and in brains of fatal COVID‑19
cases35, suggesting that GR‑linked stress and treatment responses converge
on FKBP5 during advanced disease, although its causal role in
COVID‑19 severity remains inconclusive. While these findings point to a
functional association between FKBP5 activity and COVID‑19 pathophy-
siology, further mechanistic and longitudinal studies are required to clarify
whether FKBP5 is a driver of severe COVID-19.

The remaining ten cis-eQTM genes not covered in-depth in this study
may still contribute to the broader molecular response to SARS-CoV-2
infection. Further investigation is warranted on elucidating their roles,
which could reveal indirect effects on disease severity or related complica-
tions. Taken together, the blood-basedmulti-omicmarkers discovered here
underscore pulmonary lesions and associated clinical symptoms. These
markers could help predict respiratory complications and monitor disease
severity.

In the recovery phase, spanning two to three weeks post-infection, we
observed a relatively fast restoration of both the epigenome and tran-
scriptome to levels akin to those of COVID-19 convalescence, across both
severe andmild patient cohorts. The gene regulatorymechanisms observed
in severe COVID-19 survivors, who avoided fatal outcomes, did not show
significant disparities when compared to those in mild cases. This indicates
that the identifiedCpGs are reactive to both the acute infection and recovery
over the relatively short time period, reflecting the rapidly evolving patho-
logical trajectory of the patients. Despite these overall trends, our findings
also point to heterogeneity in recovery trajectories, particularly among SC
patients. In a subset of individuals, epigenetic reversal was less pronounced,
and in one notable case (C19-C058), virtually no change in DNA methy-
lation was observed between the acute and follow-up samples. This indi-
vidual had a high CCI, remained on oxygen therapy at follow-up, and their
recovery-phase sample was taken just 10 days after the acute-phase time
point. While these clinical factors may explain the apparent lack of epige-
netic normalization, the case highlights that not all patients follow the same
recovery timeline—and that molecular reversal may lag behind clinical
resolution in more complex or prolonged disease courses.

In conclusion, these observations demonstrate that both cell-intrinsic
and extrinsic epigenetic markers are responsive to COVID-19 pathophy-
siology and capable of tracking the acute-to-recovery transition. However,
the variability across individuals also points to the importance of integrating
clinical context and extending the observation window to fully understand
the persistence, resolution, or relapse ofmolecular alterations—especially in
relation to long-term sequelae, such as long-COVID.

Our investigation encountered several critical limitations. First, the
COVID-19 severe cases in this study exhibited variability in the timing and
duration of oxygen therapy following hospitalization (Fig. 1B). This dis-
crepancy poses constraints on elucidating the exact association between
identified biomarkers and the severity of the condition. Second, the limited
number of samples in the severe group presents a challenge in drawing
comprehensive general conclusions. Third, the lack of standardized control
over the recovery phase, ranging from two to three weeks per patient,
introduces variability that influences the interpretation of results. Addi-
tionally, the separate sample collection periods in 2021 and 2022 renders
complexity. Different SARS-CoV-2 sub-strains—Delta and Omicron—
were predominant during these times. The variants differed in transmissi-
bility, virulence, and immune evasion, likely influencing disease severity and
treatment response36. Lastly, while cytokine measurements were not per-
formed in this study, the absence of these data limits our ability to directly
evaluate the contribution of cytokine-mediated inflammatory responses to
disease severity. Given the established role of cytokine storms in severe
COVID-19 cases, future studies integrating cytokine profiling with epige-
netic and transcriptomic data would offer a more comprehensive under-
standing of immune dysregulation in acute infection.

Materials and methods
Samples and clinical characteristics
We collected whole blood samples from 46 patients diagnosed with
COVID-19 from Ulsan University Hospital (UUH), Ulsan, Republic of
Korea. This study has received approval from the Institutional Review
Board (IRB) of UUH and Ulsan National Institute of Science and
Technology (UNIST) (IRB No.: UUH-2021-04-011-004, UNISTIRB-
21-15-A). All ethical regulations relevant to human research partici-
pants were followed.

For the hospitalized patient group, whole blood samples were collected
twice: once during the acute phase (at the time of hospital admission) and
once during the recovery phase (2 to 3 weeks after hospitalization). For the
convalescent patient group, whole blood samples were obtained between 4
to 12 weeks after COVID-19 diagnosis. These individuals had been pre-
viously hospitalized due toCOVID-19 but had fully recovered at the time of
sample collection. Our sampling period is divided into two halves. The first
was during2021,whichwas followedby the second in 2022.The acute phase
of infection was defined as the period from hospitalization due to COVID-
19 to one week thereafter, while the subsequent period of up to three weeks
was defined as the recovery phase. A healthy control group consisted of 344
whole blood samples collected (309 samples for methylation, 34 for gene
expression studies, and one sample for both omics) from the Korean
Genome Project (KGP), approved by the IRB at UNIST in Ulsan, South
Korea (IRB No.: UNISTIRB-21-66-A).

Patient classification of COVID-19 severity
The patients were assigned their severity upon diagnosis according to Food
and Drug Administration (FDA) severity categorization and categorized
into four groups: “Mild”, “Moderate”, “Severe”, and “Critical” (Supple-
mentary Table 5)37,38. We further categorized the patients upon analysis
defining their severity into two discrete groups:MM formild andmoderate
categories and SC for severe and critical categories. SC patients suffered
from respiratory symptoms with 80% of the patients requiring oxygen
therapies, such as nasal prong or high-flow nasal cannula, or both, as
compared to 14.6% for theMMgroup. In addition, 40%of the SC caseswere
admitted to the ICU, while none in the MM (Table 2).

Clinical information
We collected clinical data from informed and consenting patients alongside
whole blood samples. The dataset included routine laboratory measure-
ments, smoking history, and viral load estimates based on PCR Ct values
(Supplementary Fig. 1). To investigate clinical correlates of disease severity,
we compared these parameters across patient groups stratified by COVID-
19 severity. Clinical variables with insufficient sample size (fewer than three
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observations in any group) were excluded from downstream analyses to
ensure statistical robustness.

Target bisulfite sequencing and methylation quantification
Frozen whole blood samples collected in EDTA tubes (Becton Dickinson,
#367856)were used for genomicDNA(gDNA) extraction, performedusing
the DNeasy Blood & Tissue Kit (Qiagen, #69506) according to the manu-
facturer’s instructions.

Bisulfite-converted DNA libraries were prepared using the Sur-
eSelectXT Methyl-Seq Target Enrichment System Kit (Agilent, #G9651),
following the manufacturer’s protocol. Sequencing was performed on the
NovaSeq 6000 platform (Illumina), generating 150 bp paired-end reads.

Raw sequencing reads were processed using Fastp (v0.23.1) to remove
adapters and low-quality bases39, with the following parameters: --cut_front
1 --cut_right 0 --cut_tail 1 --detect_adapter_for_pe --trim_front1 15
--trim_front2 15 --trim_tail1 0 --trim_tail2 0 --cut_mean_quality 20
--n_base_limit 1 --average_qual 20 34. Read qualitywas assessed before and
after filtering reads using FastQC (v0.11.9)40.

Filtered reads were aligned to the human reference genome
(GRCh38.p13) using Bismark (v0.23.1), a bisulfite-aware aligner41. Methy-
lation calling and quantification were conducted using the methylKit R
package (v1.20.0)42. To annotate CpG sites and associate them with prox-
imal genesor regulatory features,weused the annotatrRpackage (v1.20.0)43.

mRNA sequencing and expression quantification
Frozen whole blood samples collected in PAXgene® Blood RNA Tubes
(PreAnalytiX, #762174) were used for total RNA extraction. RNA integrity
and concentration were assessed using a Qubit 2.0 Fluorometer (Thermo
Fisher Scientific, #Q32866) and the Qubit RNA HS Assay Kit (Thermo
Fisher Scientific, #Q32854). For mRNA enrichment, 200 ng of total RNA
per sample was processed using the Dynabeads mRNA Purification Kit
(Thermo Fisher Scientific, #01152851), which depletes rRNA and isolates
polyadenylated transcripts using oligo(dT) beads.

Library preparation was performed using the MGIEasy RNA Direc-
tional Library Prep Set (MGI, #MG1000006386), following the manu-
facturer’s protocol. Fragment size distribution was checked using 4150
TapeStation (Agilent, #G2992A) with the cDNA D1000 ScreenTape (Agi-
lent, #5067-5582). Final libraries were quantitated using the Qubit 2.0
Fluorometer (Thermo Fisher Scientific, Q32866). RNA sequencing was run
on DNBSEQ-T7RS (MGI) platform, generating 150 bp paired-end reads.

RNA-seq readswere trimmedandquality-filteredusingFastp (v0.23.1)
with the same parameters as for DNAmethylation processing. Read quality
was verified using FastQC (v0.11.9).

Filtered reads were aligned to the human reference genome
(GRCh38.p13) using STAR (v2.7.10b), a splice-aware aligner, with default
settings44. Gene-level quantification was performed using RSEM (v1.3.3)
using default options45, with gene annotations fromGENCODE v42 (GFF3
format). Raw expression values were derived from the expected counts
generated by RSEM.

Batch effect correction of gene expression data
To integrate gene expression data froman independent cohort of 35 healthy
individuals, we implemented rigorous batch effect correction to ensure
comparability. All samples were processed using an identical bioinformatic
pipeline as RNA-seq data for COVID-19 patients to avoid potential in silico
batch effects.We applied theComBat-seqmethod implemented in the svaR
package (v3.54.0)46 to remove batch effect by differences in sequencing
platforms (i.e., NovaSeq 6000 vs DNBSEQ-T7RS) while preserving the
biological condition (i.e., Healthy vs. COVID-19 status).

Normalization of gene expression data
To account for differences in sequencing depth and library composition,
raw expected gene counts were normalized using the DESeq2 R package
(v1.38.3)47. A variance stabilizing transformation (VST) was subsequently

Table 2 | Baseline Characteristics of COVID-19 Hospitalized
Patients, Convalescent Patients, and Non-infected Healthy
Individuals

COVID-19 Hospitalized
patients

Convalescent
group (n = 90)

Healthy
controls
(n = 310)

Mild-
Moderate
group
(n = 37)

Severe-
Critical
group
(n = 9)

Age,
mean(min, max)

44(19,71) 50(24,66) 42(19,66) 42(19, 66)

Sex, n(%)

Male 24(64.9) 4(44.4) 45(50) 188(60)

Female 13(35.1) 5(55.6) 45(50) 122(40)

BMI 24.8 25.5 24.4 23.45

Smoking status, n(%)

Current 3(8.1) 3(33.3) 46(14.8)

Former 3(8.1) 1(11.1) 79(25.5)

Never 31(83.8) 5(55.6) 173(55.8)

NA 0 0 90 12(3.9)

Oxygen therapy, n(%)

Yes

Nasal prongonly 8(21.6) 5(55.6)

HFNC only 0 2(22.2)

Both (Nasal
prong
and HFNC)

0 2(22.2)

No 26(70.3) 0

Intensive care unit, n(%)

Yes 0 (0) 3(33.3)

No 37(100) 6(66.7)

Use of antiviral drugs, n(%)

Yes

Regdanvimab 3(8.1) 2(22.2)

Remdesivir 10(27) 6(66.7)

No 24(64.9) 1(11.1)

Use of steroid, n(%)

Yes 11(29.7) 7(77.8)

No 26(70.3) 2(22.2)

Pneumonia, n(%)

Yes 10 (27) 7(77.8)

No 27 (73.0) 2(22.2)

ARDS, n(%)

Yes 0 (0) 2(22.2)

No 37(100) 7(77.8)

Vaccination status, n(%)

Yes 13(35.1) 6(66.7)

No 24(64.9) 3(33.3)

CCI, n(%)

0-1 24(64.9) 1(11.1)

2 4(10.8) 4(44.4)

≥3 8(21.6) 3(33.3)

Demographic and clinical data are summarized for the clinical cohorts. Continuous variables
(e.g., age and BMI) are presented as mean values with minimum and maximum ranges in
parentheses. Categorical variables (e.g., sex, smoking status, and CCI) are expressed as
counts with corresponding percentages. Smoking status was self-reported and categorized
as current, former, or never smoker. HFNC high-flow nasal cannula, ARDS acute respiratory
distress syndrome, CCI Charlson Comorbidity Index.
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applied to the normalized counts. VST approximates a log2 transformation
while decoupling mean-variance relationships of RNA-seq data, thereby
improving the accuracy and interpretability of downstream statistical ana-
lyses.VST-transformedvalueswereused for pairwise comparisons stratified
by COVID-19 severity, allowing expression differences to be interpreted in
fold-change-like units. These transformed values were also used for prin-
cipal component analysis (PCA) to assess global expression patterns and
sample clustering.

Discovery of differential methylation CpGs (DMC) associated
with COVID-19 severity
Methylkit (R package; v1.20.0)42 was used to discover the Differentially
MethylatedCpGs (DMC) forCOVID-19severity, treating age and sexof the
patients as covariates. We utilized the leave-one-out (LOO) method for
cross-validation, iteratively collecting DMC without a sample for each
round of discovery. Methylation sites that suffice the thresholds of absolute
methylation difference (|meth.diff | ) >10 and FDR < 0.05 were selected as
significant markers of the severity. The adjustment for P-value was done by
Benjamini-Hochberg correction.We only selected a set of markers, those of
which overlapped over all the folds.

Leukocyte-adjusted discovery of DMCs associatedwith COVID-
19 Severity
We repeated the LOO-basedDMCdiscovery as previously described. Here,
we adjusted for age, sex, and blood cell-type composition (%)—including
neutrophils, lymphocytes, monocytes, basophils, and eosinophils. This
analysis included only samples with available cell count measurements
recorded during clinical data collection, comprising 24 MM and 9 SC
patients. The significance thresholds and marker selection criteria were
identical to those used in the leukocyte-unadjusted analysis.

Discovery of DEGs associated with COVID-19 severity
DEGs associatedwithCOVID-19 severity were identified using theDESeq2
R package (v1.38.3). Given the limited number of SC cases (n = 9), we
employed a LOO cross-validation strategy to enhance the robustness of
DEG discovery. In each iteration, one SC sample was excluded, and dif-
ferential expression analysis was performed between the remaining SC and
mild cases. This procedure was repeated nine times, each time omitting a
different SC sample. Genes were considered significantly differentially
expressed if they satisfied the following thresholds: absolute log₂ fold change
(|log₂FoldChange | ) >1.3 and false discovery rate (FDR) < 0.05. To define
robust DEGs (DEG-LOOs), we retained only those genes that exhibited
consistent directionality—either upregulation or downregulation in SC
patients—in at least seven out of the nine independent LOO iterations.

Gene ontology enrichment of DMCs and DEGs
To interpret the biological functions associated with differential DNA
methylation and gene expression associated with COVID-19 severity, Gene
Ontology (GO) enrichment analysis was conducted separately for genes
linked to differentially methylated CpGs (DMCs) and DEGs. GO enrich-
ment analysis was performed using ShinyGO v0.82 (https://bioinformatics.
sdstate.edu/go82/)48, focusing on the Biological Process (GO:BP) category.
The gene universewas defined as all genes expressed in theRNA-seqdataset
(for DEGs) or all genes targeted by measured CpGs (for DMCs). Statistical
significance was assessed using a hypergeometric test with
Benjamini–Hochberg correction. GO terms with FDR < 0.05 were con-
sidered significantly enriched.

Prioritization of severity-associated CpG sites via cis-eQTM
(expression quantitative trait methylation) analysis
We performed an eQTM analysis to assess the relationship between CpG
methylation and gene expression (DESeq2-normalized read count) that
have been discovered during previous steps (i.e., DMC and DEG) (Sup-
plementary Fig. 9). Spearman correlation was used to quantify this
relationship, with a significance threshold of absolute correlation

coefficient > 0.5 using scipy.stats (v1.4.1). Gene coordinates and transcrip-
tion start sites (TSS)were extracted fromGENCODEv42 (GTF format). For
cis-association analysis, we restricted the search space to CpG sites located
within a±1Mbpwindowof the corresponding gene’s TSS. Thiswindowwas
selected to capture local regulatory effects of CpG methylation on gene
expression.

Statistics and reproducibility
Welch’s t-test (a two-sample independent t-test of unequal variances) was
performed to find the mean difference of methylation values between dif-
ferent groups of infection stages using scipy.stats (v1.4.1). The normality
assumption for the distributions of omics data was checked by the Shapiro-
Wilk test using scipy.stats (v1.4.1) (Supplementary Table 6, 7). TheP-values
were adjusted with the Benjamini-Hochberg approach using statsmodels.-
stats (v0.13.2). Wilcoxon rank-sum test using scipy.stats (v1.4.1) was per-
formed to test the statistically significant differences in gene expression and
clinical values across severities. Principal components forDNAmethylation
and gene expression were computed using sklearn.decomposition.PCA
(v0.23.2). All visualizations were drawn using matplotlib (v3.5.3) and sea-
born (v0.11.0). The sample sizes for each analysis are indicated in the figure
legends and supplementary tables. No separate replicate experiments were
conducted. Instead, we assessed the robustness of our marker selection by
applying a LOO cross-validation approach during the identification of
DMPs andDEGs.Detailed descriptions of the LOOprocedure are provided
in the respective sections for DMP and DEG analyses.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
DNAmethylation beta values derived from target bisulfite sequencing have
been deposited in the GEO under accession number GSE301082. Raw
expression values derived fromRNA sequencing have been deposited in the
GEO under accession number GSE300696. The corresponding raw
sequencing data, including bisulfite-seq and RNA-seq reads, are available
from the NCBI Sequence Read Archive (SRA) under the BioProject
accessionnumberPRJNA1292728.All otherdata, including raw sequencing
data, are available from the corresponding author upon reasonable request.
Thenumerical data underlying allfigures and supporting thefindings of this
study are available in Supplementary Data 1.

Code availability
The codes used to generate data and calculate statistics are openly available
in the Github page: https://github.com/korean-genomics-center/
Multiomics_COVID19_Severity.
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