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Review

The innate immune system relies on innate immune sensors, such as pattern recognition re-
ceptors (PRRs), to detect pathogens and initiate immune responses, crucial for controlling 
infections but also implicated in inflammatory diseases. These innate immune sensors, in-
cluding Toll-like receptors (TLRs), nod-like receptors (NLRs), RIG-I-like receptors (RLRs), ab-
sent in melanoma 2 (AIM2), and Z-DNA binding protein 1 (ZBP1) trigger signaling pathways 
that produce cytokines, modulating inflammation and cell death. Traditional therapies focus 
on directly targeting pathogens; however, host-targeting therapeutic strategies have 
emerged as innovative approaches to modulate innate immune sensor activity. These strat-
egies aim to fine-tune the immune response, either enhancing antiviral defenses or mitigat-
ing hyperinflammation to prevent tissue damage. This review explores innate immune sen-
sor-based therapeutic approaches, including inhibitors, agonists, and antagonists, that en-
hance antiviral defense or suppress harmful inflammation, highlighting innate immune sen-
sors as promising targets in infectious and inflammatory disease treatment.
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Introduction

Innate immunity serves as the body first line of defense against patho-
gens, including viruses, bacteria, and parasites. This rapid response is ini-
tiated immediately or within hours of encountering pathogens (Marshall 
et al., 2018), and it is driven by pattern recognition receptors (PRRs) that 
detect pathogen-associated molecular patterns (PAMPs) and dam-
age-associated molecular patterns (DAMPs) such as HMGB1, ATP, and 
uric acid.

PAMPs are highly conserved molecular patterns that are specific to 
and commonly found in certain types of pathogenic microorganisms. In-
nate immune cells recognize PAMPs through PRRs and distinguish “self” 
and “non-self”. When the host is stimulated by tissue damage, cell necro-
sis, or other factors, it produces certain proteins and metabolites (Gong 
et al., 2020), these molecules are known as DAMPs. PRRs, such as Toll-like 
receptors (TLRs), nucleotide-binding oligomerization domain (NOD)-like 
receptor family proteins (NLRs), retinoic acid-inducible gene I (RIG-I)-like 
receptors (RLRs), absent in melanoma 2 (AIM2), and Z-DNA binding pro-
tein 1 (ZBP1)(Enzan et al., 2023), play a crucial role in activating the in-
nate immune system by detecting PAMPs and DAMPs. Each PRR plays an 
essential role in sensing specific ligands and initiating signaling path-

ways that regulate gene expression, protein synthesis, release of cytokine 
and chemokine, and cell death (Kanneganti, 2020) (Fig. 1).

In this review, we discuss how innate immune sensor detect patho-
gens through PRRs and explore current therapeutic strategies that target 
innate immune sensors.

Toll-Like Receptors (TLRs)

Toll-like receptors (TLRs) are one of the first identified PRRs and are 
pivotal in initiating inflammatory responses (Fitzgerald and Kagan, 
2020). TLRs are membrane-bound signal receptors and TLRs have dual 
functions: binding specifically to their ligands and transmitting signal to 
amplify the effect of anti-pathogen infection (Li and Wu, 2021). In hu-
mans, TLR1 to TLR10 have been found, whereas in mice, TLR1 to TLR9, 
and TLR11 to TLR13 are present, while TLR10 is not functional due to the 
insertion of reverse transcriptase (Balachandran et al., 2022). The recog-
nition of PAMPs by TLRs depends on their cellular localization, which dic-
tates the types of ligands they recognize and the mechanisms of recog-
nition. Certain TLRs are found on the surface of immune cells, either as 
homodimers or heterodimers, and primarily detect membrane compo-
nents of pathogens, including lipids, lipoproteins, and proteins. In con-



Fig. 1. Innate immune sensors response to various stimuli. Toll-like receptors (TLRs) detect ligands such as lipopolysaccharide (LPS), 
zymosan, flagellin, double-stranded RNA (dsRNA), and CpG DNA, signaling through Myeloid Differentiation Primary Response 88 (MyD88)- 
or TIR-domain-containing Adapter-inducing Interferon-β (TRIF)-dependent pathways to induce inflammatory cytokines. Endosomal TLRs, 
including TLR3, TLR7, TLR8, and TLR9, recognize viral or endogenous nucleic acids. Canonical inflammasomes, assembled by Nod-like 
receptors (NLRs) such as NOD-like Receptor Family Pyrin Domain-containing 1 (NLRP1), NLRP3, and NLR containing CARD 4 (NLRC4), as 
well as Absent in Melanoma 2 (AIM2) and pyrin, recruit pro-caspase-1 via the Apoptosis-associated Speck-like Protein Containing a CARD 
(ASC) adaptor. This activates caspase-1, promoting the release of interleukin-1β (IL-1β) and IL-18. NLRP3 responds to bacterial toxins, viral 
RNA, ATP, and reactive oxygen species (ROS). The RIG-I-like receptor (RLR) family, including Retinoic Acid-Inducible Gene I (RIG-I), Melanoma 
Differentiation-Associated Gene 5 (MDA5), and Laboratory of Genetics and Physiology 2 (LGP2), detects viral RNA. Z-DNA-Binding Protein 1 
(ZBP1) recognizes Influenza A virus (IAV) and induces pyroptosis, apoptosis, or necroptosis.

Figure 1. Innate immune sensors response to stimuli
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trast, other TLRs, such as TLR3, 7, 8, and 9 are expressed intracellularly as 
homodimers and are specialized in recognizing microbial nucleic acids 
(Chuenchor et al., 2014; Li and Wu, 2021).

TLR1 and TLR6 can combine with TLR2 to form TLR1/TLR2 or TLR6/
TLR2 heterodimers, enabling the recognition of tri-acylated lipopeptides 
and di-acylated lipopeptides (Farhat et al., 2008). Several PAMPs can 
stimulate TLR4, these molecules include lipopolysaccharide (LPS) from 

Gram-negative bacteria, the fusion (F) protein of respiratory syncytial vi-
rus (RSV) and the envelope protein of mouse mammary tumor virus 
(MMTV) (Kurt-Jones et al., 2000; Lu et al., 2008; Rassa et al., 2002). Flagel-
lin binding to TLR5 leads to the activation of MyD88-dependent signal-
ing pathways (Yoon et al., 2012). This process triggers the proinflamma-
tory transcription factor nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-kB) in various cells, including epithelial cells, mono-
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cytes, and dendritic cells, thereby initiating innate immune responses 
against bacteria with flagella (Eaves-Pyles et al., 2001; Gewirtz et al., 
2001; Hayashi et al., 2001; McDermott et al., 2000; Means et al., 2003). 
TLR3 is essential for identifying double-stranded RNA (dsRNA), a key fac-
tor in the detection of viral infections (Chattopadhyay and Sen, 2014). 
TLR7 is known to detect guanosine- or uridine-rich single stranded RNA 
(ssRNA) from various viruses such as human immunodeficiency virus 
(HIV), vesicular stomatitis virus (VSV), and influenza virus (Diebold et al., 
2004). TLR8 is closely related to TLR7, and both genes are located on the 
X chromosome. TLR9 is crucial for recognizing the CpG motif of bacterial 
and viral DNA, as TLR9-deficient mice fail to respond to CpG DNA (Hemmi 
et al., 2000; Takeda and Akira, 2015).

TLRs are key membrane bound PRRs that detect PAMPs and initiate 
innate immune responses by recognizing a diverse range of ligands 
based on their cellular localization and receptor specificity.

Nod-Like Receptors

The nucleotide oligomerization domain (Nod)-like receptors (NLRs) 
are intracellular cytosolic sensors (Franchi et al., 2009). NLRs are crucial 
for detecting molecules related to intracellular infections (Yu et al., 2024). 
Some NLRs such as NLRP1, NLRP3, and NLRC4 are specialized in trigger-
ing the activation of an intracellular complex known as inflammasomes 
(Almeida-da-Silva et al., 2023). NLRP6 and NLRP9b have broader physio-
logical functions, including gut homeostasis and antiviral defense (Ve-
nuprasad and Theiss, 2021; Zhu et al., 2017). Inflammasomes are 
multi-protein complexes that assemble within the host cell in response 
to PAMPs or different forms of stress can be released into the extracellu-
lar space, where they contribute to inflammation (Broz and Dixit, 2016; 
Lee et al., 2021a; Martinon et al., 2002).

Few ligands have been found for NLRP1 to date, which include bacte-
rial products such as lethal toxin (LT) produced by Bacillus antharacis 
which activates murine NLRP1b (Levinsohn et al., 2012), muramyl dipep-
tide (MDP) (Zhong et al., 2013), a component of bacterial peptidoglycan 
that activates human NLRP1(Feldmeyer et al., 2007). The murine NLRP1b 
inflammasome is activated by a reduction in cytosolic ATP levels (Chavar-
ria-Smith and Vance, 2013; Frew et al., 2012; Hellmich et al., 2012; Liao 
and Mogridge, 2013). NLRP3 plays a role primarily in the formation of an 
inflammasome complex and NLRP3 inflammasome is the most well-
known inflammasome. The activation of the NLRP3 inflammasome re-
quires two signals: first, a priming signal, triggered by PAMPs such as LPS, 
activates the NF-kB pathway and consequent upregulation of NLRP3, 
pro-interleukin-1beta (IL-1β) and pro-IL-18; and second, an activation 
signal, which is provided by various stimuli, such as DAMPs. Many stimuli 
can activate the NLRP3 inflammasome, such as extracellular ATP, ROS 
generation, mitochondrial dysfunction, viral infection (Almeida-da-Silva 
et al., 2023; Lee et al., 2019).

The NLR family of apoptosis inhibitory proteins (NAIPs) represents a 
well-characterized NLR sub-family. NAIP proteins function as specific cy-
tosolic receptors for various bacterial protein ligands. NAIPs assemble 
with a downstream protein NLRC4, interferon regulatory factor 8 (IRF8) 
(Karki et al., 2018) is required to form an NLRC4 inflammasome (Vance, 
2015). NAIP5 in mice recognizes flagellin (Kofoed and Vance, 2011; Light-
field et al., 2008), the main protein component of the bacterial flagellum. 
NAIPs co-oligomerize with a downstream adapter protein called NLRC4. 

NLRC4 mediates the recruitment and activation of caspase-1 protease 
following NAIP activation (Mariathasan et al., 2006; Vance, 2015). The evi-
dence that NLRC4 activation might be controlled by a ligand emerged 
from the observation of NLRC4-deficient murine macrophages failed to 
trigger caspase-1 activation in response to Salmonella typhimurium 
(Duncan and Canna, 2018; Place et al., 2021). NLRP6 is expressed pre-
dominantly in the intestine and liver, plays important roles in sensing 
and initiating the anti-bacterial and anti-viral immune response (Li et al., 
2022a). During Staphylococcus aureus infection, NLRP6 is upregulated, 
which facilitates the assembly of the NLRP6 inflammasome complex by 
recruiting apoptosis associated speck-like protein containing a CARD 
(ASC) and caspase-1 (Ghimire et al., 2020). The NLRP9b inflammasome 
functions exclusively in intestinal epithelial cells (IECs) and limits rotavi-
rus infection (Zhu et al., 2017).

NLRs are versatile cytosolic sensors that play crucial roles in detecting 
intracellular infections, assembling inflammasomes, and mediating im-
mune responses against a diverse range of pathogens.

RIG-I-Like Receptors (RLRs)

Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) play a cru-
cial role in detecting viral infections, driving the expression of type I IFNs 
and other genes that contribute together for the antiviral defense mech-
anism of the host (Rehwinkel and Gack, 2020). RLRs are found in many 
cell types and are predominantly located in the cytosol, although recent 
studies have indicated that RIG-I can also be present in the cell nucleus (Li 
et al., 2014; Liu et al., 2018). RLRs include three proteins: RIG-I, melanoma 
differentiation-associated protein 5 (MDA5), and laboratory of genetics 
and physiology 2 (LGP2). RIG-I and MDA5 are activated by immunostim-
ulatory RNA, such as viral RNAs (Rehwinkel and Gack, 2020).

The functions of RLRs in detecting RNA viruses have been elucidated 
through studies on mice deficient for each respective RLR (Kato et al., 
2005, 2006). RIG-I and MDA5 deficient mice showed increased suscepti-
bility to RNA virus infections, indicating that RIG-I and MDA5 mediated 
antiviral responses are crucial for the elimination of RNA viruses (Song et 
al., 2022). RIG-I plays a critical role in recognizing various ssRNA viruses, 
such as paramyxoviruses (Ikegame et al., 2010), influenza A virus (IAV) 
(Kato et al., 2006; Lee et al., 2018), vesicular stomatitis virus (VSV) and 
Japanese encephalitis virus (JEV) (Chang et al., 2006). MDA5 is necessary 
for detecting other RNA viruses, including picornaviruses such as en-
cephalomyocarditis virus (EMCV) (Gitlin et al., 2006; Kato et al., 2006), 
coxsackievirus B3 (CVB3) (Wang et al., 2010), murine norovirus (McCart-
ney et al., 2008), Mengo virus (Kawai and Akira, 2009).

RIG-I and MDA5, upon activation, initiate downstream signaling by in-
teracting with mitochondrial antiviral signaling (MAVs) (Goubau et al., 
2013). MAVS activates its downstream components, including kinases 
TBK1/IKKε and the IKK complex (Fang et al., 2017). Once activated, inter-
feron regulatory factor 3 (IRF3) and NF-κB move from the cytosol to the 
nucleus, promoting the transcription of various innate immune response 
genes, such as IFNs, antiviral genes, and pro-inflammatory genes that 
play a key role in coordinating the body’s innate immune response to in-
fection. IFNs then trigger the expression of hundreds of interferon-stimu-
lated genes (ISGs), whose products exhibit antiviral, immunomodulatory, 
cell growth regulatory, and metabolic regulatory functions that create an 
antiviral state (Chiang et al., 2014). If this reaction is effective, this re-
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sponse significantly limits viral replication and the spread of infection 
between cells. However, many, if not all, pathogenic viruses have mecha-
nisms to escape the innate immune response, enabling them to cause 
disease (Kell and Gale, 2015). In addition, recent studies have shown that 
RLRs can recognize endogenous RNA under certain conditions, which 
may lead to aberrant activation of immune responses and contribute to 
the pathogenesis of autoimmune diseases, such as Alcardi-Goutières 
syndrome (AGS) and systemic lupus erythematosus (SLE) (Rehwinkel and 
Gack, 2020; Zhao et al., 2018).

Other Cytosolic Innate Immune Sensor

AIM2 recognizes cytosolic DNA, an indication of pathogen invasion, 
through its oligonucleotide/oligosaccharide binding domain. In re-
sponse to cytosolic dsDNA, AIM2 forms a macromolecular structure 
known as inflammasome (Rathinam et al., 2010; Sharma et al., 2019). 
AIM2 interacts with ASC through its pyrin domain, leading to the activa-
tion of caspase-1 (Fernandes-Alnemri et al., 2009; Kumari et al., 2020). 
The detection of dsDNA by AIM2 in the cytosol is crucial for initiating 
protection against invading pathogens such as bacteria, virus, fungi and 
parasites (Sharma et al., 2019). Viruses like Mouse cytomegalovirus 
(MCVM), vaccinia virus (VACV), and human papillomavirus (HPV) have 
been found to trigger the activation of the AIM2 inflammasome (Hor-
nung et al., 2009; Man et al., 2015; Reinholz et al., 2013).

Z-DNA-binding protein 1 (ZBP1) is a Z-form nucleic acid (Z-NA) sensor 
that contains two Zα domains that recognize Z-DNA and Z-RNA, playing 
a role in defending the host against certain viruses such as influenza A 
virus (IAV) (Kuriakose et al., 2016; Oh et al., 2023, 2025; Oh and Lee, 2023) 
and herpes simplex virus 1 (HSV-1) (Lee et al., 2021b) by detecting viral 
nucleic acids (Jiao et al., 2020a; Karki et al., 2022; Maelfait et al., 2017; Sri-
dharan et al., 2017; Thapa et al., 2016). The recognition of viral and en-
dogenous Z-NA by the Zα domain of ZBP1 enables interaction with 
RIPK3 through Receptor-interacting protein kinase Homotypic Interac-
tion Motif (RHIM)-RHIM homotypic interactions, which leading to inflam-
matory cell death (Devos et al., 2020; Jiao et al., 2020a; Karki et al., 2021a; 
Kesavardhana et al., 2020; Kuriakose et al., 2016).

AIM2 and ZBP1 are key cytosolic sensors that detect intracellular DNA 
and Z-NA, respectively, triggering inflammasome formation or inflam-
matory cell death to protect against invading pathogens such as bacte-
ria, viruses.

Importance of Cytosolic Innate Immune 
Sensors in Infectious, Inflammatory, and 
Metabolic Diseases

Innate immune sensors play a crucial role in modulating infectious, in-
flammatory and metabolic disease (Kanneganti, 2020; Karki and Kan-
neganti, 2021; Kwak et al., 2025). Numerous pathogens experience intra-
cellular phase during infection, after the invasion, these pathogens ex-
ploit and hijack the host’s cellular environment and resources to facilitate 
their replication and proliferation. During this time, pathogen compo-
nents, including nucleic acids and polysaccharides can be exposed to the 
innate immune sensors recruiting cell death molecules. Thus, cytosolic 
innate immune sensors are crucial for recognizing intracellular PAMPs 
and inducing inflammatory cell death (Bruns et al., 2014).

Among these sensors, ZBP1 typically acts as a key defense mechanism 
against viral infections. However, in the case of COVID-19 caused by 
SARS-CoV2 infection, ZBP1 contributes to cell death, cytokine storm and 
lethality in COVID-19 (Karki et al., 2022). In a typical viral infection, viral 
RNA is detected by various PRRs, such as TLRs, NLRs, and RLRs for the 
production of proinflammatory cytokines to initiate an antiviral response 
(Lee et al., 2020). HSV-1, a dsDNA virus responsible lifelong incurable, re-
current pathologies, and Francisella, a Gram-negative bacterium capa-
ble of causing rapid lethality, are two diverse pathogens known to acti-
vate the AIM2 inflammasome and induce cell death (Lee et al., 2021b).

While AIM2 plays a protective role in promoting host defense respons-
es, its inappropriate activation is associated with worsening of diseases 
such as atherosclerosis (Fidler et al., 2021), melanoma (Fukuda et al., 
2021), ischemic stroke (Denes et al., 2015; Kim et al., 2020), and post-
stroke immunosuppression (Roth et al., 2021). The NLRP3 inflammasome 
has been identified as a trigger of Alzheimer’s disease (AD) pathogenesis. 
In patients with AD, both the mRNA and protein levels of NLRP3 are ele-
vated in monocytes (Koh et al., 2021; Lee et al., 2021c). Additionally, ex-
ogenous-aggregated tau triggers the activation of the NLRP3 inflam-
masome in the microglia (Stancu et al., 2019).

RLRs are also involved in the innate immune response to infections 
caused by viruses such as SARS-CoV-2. When SARS-CoV-2 infects pneu-
mocytes, cytosolic MDA5 and LGP2 mediate the delayed induction of in-
terferons, which in turn establish an antiviral environment by activating 
ISGs. Additional evidence indicates that SARS-CoV-2 intermediates spe-
cifically induce interferon production via the MDA5 signaling pathway 
(Yin et al., 2021).

Cytosolic innate immune sensors are essential for pathogen defense, 
but their dysregulation can drive inflammatory diseases, emphasizing 
the need for precise regulation of immune responses.

Virus Targeting Therapeutic Strategies

In viral infections, therapeutic strategies can be broadly classified into 
two categories:  targeting virus itself and targeting the host. Each ap-
proach has its advantages and challenges, and both are essential in the 
development of antiviral therapies.

This section focuses on virus targeting therapies aim to directly inhibit 
key stages of the viral life cycle, blocking the virus from replicating and 
spreading. Maraviroc is a chemokine receptor type 5 (CCR5) antagonist 
that blocks the entry of HIV into host cells by preventing the virus from 
binding to the CCR5 receptor, which is essential for HIV entry (Woollard 
and Kanmogne, 2015). Replication inhibitors block viral genome replica-
tion by targeting enzymes like polymerases. For instance, Remdesivir in-
hibits the RNA-dependent RNA polymerase of SARS-CoV-2 (Bakheit et 
al., 2023; Grundeis et al., 2023). Protease inhibitors interfere with the pro-
cessing of viral proteins needed for maturation. Ritonavir is commonly 
used in HIV treatment to inhibit viral protease activity (Hsu et al., 1998). 
Oseltamivir (Tamiflu) functions as neuraminidase inhibitor that blocks 
the release of newly formed influenza virus particles from infected cells, 
thereby limiting viral spread and reducing the severity of infection 
(Świerczyńska et al., 2022). However, one of the major challenges with 
virus targeting therapies is the rapid mutation rate of RNA viruses, such 
as HIV, influenza, and SARS-CoV-2, which can lead to the development of 
resistant viral strains (Badia et al., 2022; Iketani and Ho, 2024).
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Virus-targeting therapies offer the advantage of directly disrupting the 
viral life cycle, leading to rapid control of infection, but their efficacy can 
be limited by the high mutation rates of RNA viruses.

Host Targeting Therapeutic Strategies

Host targeting therapies can be classified into cytokine-based therapies 
and approaches that modulate innate immune sensing (Table 1). Since 
cytokines play pivotal roles in many immune-mediated diseases, they 
have been extensively studied as potential therapeutic targets (Hafler, 
2007). Cytokine treatment can be used to modulate immune responses, 
type I IFNs are used to treat viral diseases such as hepatitis (Rasenack et 
al., 2003). In COVID-19, IL-1 and IL-6 antagonists have been shown to be 
beneficial in patients (van de Veerdonk et al., 2022). Also, patients with 
COVID-19 exhibit elevated levels of inflammatory cytokines, and the syn-
ergistic action of tumor necrosis factor-α (TNF-α) and IFN-γ has been 
shown to specifically induce cell death (Malireddi et al., 2021). Treatment 

with neutralizing antibodies against TNF-α and IFN-γ fully protected mice 
from death during cytokine storm (Karki et al., 2021b), suggesting that cy-
tokines can boost or suppress immune responses depending on the ther-
apeutic goal. However, cytokine therapy can sometimes exhibit high tox-
icity, highlighting the need for alternative approaches to modulate im-
mune responses more precisely (Baldo, 2014).

Therapeutic strategies that directly modulate innate immune sensors 
rely on agonists, inhibitors, and antagonists to achieve their effects. Ago-
nists enhance the activation of immune sensors to strengthen antiviral 
immunity. Inhibitors suppress overactivation to prevent inflamma-
tion-related damage, and antagonists block receptor ligand interactions.

Imiquimod is the first drug targeted for TLRs and acts as an agonist for 
the TLR7 receptor. It can induce the production of IFN-α, IL-6, and TNF-α, 
thereby modulating immunity and aiding in the treatment of tumors 
(Hemmi et al., 2002; Wang et al., 2005). IMO-2055 is a TLR9 agonist that 
may boost the efficacy of antitumor therapies by stimulating the im-
mune response (Smith et al., 2014). CLI-095 is a small molecule inhibitor 

Table 1. List of existing Innate immune sensor modulators
Therapeutic molecule Target Disease Effect Outcome Reference
Imiquimod TLR7 Tumor Agonist Induce the production of cytokine Hemmi et al. (2002), 

Wang et al. (2005)
IMO-2055 TLR9 Tumor Agonist Enhance antitumor efficacy Smith et al. (2014)
CLI-095 TLR4 Atherosclerosis Inhibitor Suppress LPS induced 

inflammation
Alibashe-Ahmed et al. (2019), 

Kawamoto et al. (2008), Wang et 
al. (2016)

OXPAPC TLR2, 
TLR4

Sepsis shock Inhibitor Inhibits non-canonical pyroptosis Chu et al. (2018)

TL2-C29 TLR2 Hepatitis C virus Inhibitor Inhibitor of TLR2/1 signaling Mistry et al. (2015), 
Oliveira-Nascimento et al. (2012)

MCC950 NLRP3 Inflammatory diseases 
(atherosclerosis, myocardial 
fibrosis, spinal cord injury, 
neurological disorders, intestinal 
inflammation)

Inhibitor Alleviates symptoms of associated 
inflammatory conditions

Coll et al. (2022), 
Dempsey et al. (2017), 

Gao et al. (2019), Jiao et al. 
(2020b), Zeng et al. (2021)

3,4-Methylenedioxy-
β-nitrostyrene

NLRP3 Renal ischemia Inhibitor Protects from renal ischemia Uysal et al. (2022)

Dapansutrile NLRP3 Autoimmune encephalomyelitis, 
acute arthritis

Inhibitor Atternuates clinical signs and 
improves prognosis

Klück et al. (2020), 
Marchetti et al. (2018a, 2018b), 
Sánchez-Fernández et al. (2019)

ADS032 NLRP1, 
NLRP3

IAV-induced pulmonary 
inflammation and disease severity

Inhibitor reduces acute silicosis-associated 
pulmonary inflammation

Docherty et al. (2023)

4-Sulfonic calixarenes AIM2 Post-stroke immunosuppression Inhibitor AIM2-dependent post-stroke T 
cell death inhibition

Green et al. (2023)

ODN TTAGGG AIM2 MCMV and L. monocytogenes Antagonist Blocks AIM2 inflammasome 
activation in response to 
cytosolic dsDNA

Eichholz et al. (2016), Kaminski 
et al. (2013)

UH15-38 RIPK3 Blocked IAV-triggered necroptosis 
in alveolar epithelial cells in vivo

Inhibitor UH15-38 ameliorated lung 
inflammation and prevented 
mortality

Gautam et al. (2024)

z-IETF-fmk Caspase8 Lethal bacterial peritonitis and 
pneumonia

Inhibitor z-IETD-fmk induces pro-
inflammatory cytokine 
productin in neutrophils but not 
in macrophages

Lentini et al. (2023)

VX-765 Caspase1 CNS disease Inhibitor Reduces CNS inflammation, 
prevents axonal injury, improves 
neurobehavioral in EAE

McKenzie et al. (2018)
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of TLR4 signaling. CLI-095 binds to cysteine 747 in the intracellular do-
main of TLR4, blocking MyD88-dependent and TRIF-dependent path-
ways activated by LPS (Kawamoto et al., 2008). Inhibition of TLR4 
through CLI-095 prevents the development of autoimmune diabetes in 
non-obese diabetic (NOD) mice (Alibashe-Ahmed et al., 2019). Also, TLR4 
is thought to play a key role in the occurrence and development of ath-
erosclerosis, CLI-095 significantly reduces the development of athero-
sclerosis (Wang et al., 2016). Extracellular LPS is detected by TLR4, initiat-
ing a transcriptional response, while cytosolic LPS binds and activates 
non-canonical inflammasome. oxPAPC competes with LPS for binding, 
and directly interacts with caspase-4, and caspase-11, inhibiting LPS-in-
duced pyroptosis, IL-1β release and septic shock (Zanoni et al., 2016). 
Therefore, oxPAPC and its derivatives can be potential as therapeutic 
agents targeting non-canonical inflammasome during Gram-negative 
bacterial sepsis (Chu et al., 2018). TL2-CL9 preferentially inhibits TLR2/1 
signaling in primary murine macrophages (Mistry et al., 2015).

In recent years, research on MCC950 has grown, with its targets in-
creasingly being elucidated, and its metabolism and toxicity have been a 
key of study (Li et al., 2022b). The NLRP3 inflammasome, which is activat-
ed by exogenous aggregated tau in Alzheimer’s disease (Koh et al., 2021), 
can be inhibited by the NLRP3 inhibitor MCC950, which suppresses ex-
ogenously seeded tau pathology (Stancu et al., 2019). Dapansutrile, an-
other NLRP3 inhibitor, has been found to be safe for oral use in humans 
(Marchetti et al., 2018a; Sánchez-Fernández et al., 2019). ADS032 is the 
first described dual inflammasome inhibitor and a potential therapeutic 
to treat both NLRP1 and NLRP3 associated inflammatory diseases. 
ADS032 is an effective NLRP1 and NLRP3 antagonist in human macro-
phages and epithelial cells. ADS032 inhibits NLRP3 in vivo and alleviates 
pulmonary inflammation associated with acute silicosis. ADS032 is an ef-
fective treatment for reducing IAV-induced pulmonary inflammation and 
disease severity, and it also serves as a novel tool for studying the role of 
NLRP1 in human disease (Docherty et al., 2023). Inflammation triggered 
by DNA sensors plays a crucial role in disease pathogenesis.

The 4- sulfonic calixarenes inhibited AIM2-dependent T cell death fol-
lowing stroke, providing proof concept that they could be effective at 
combating post-stroke immunosuppression (Green et al., 2023). ODN 
A151 can inhibit AIM2 inflammasome assembly, block caspase-1 activa-
tion, and prevent IL-1β maturation in antigen-presenting cells (Kaminski 
et al., 2013).

Receptor-interacting protein kinase 3 (RIPK3) inhibitors present a po-
tential target. One group demonstrate that a newly developed RIPK3 in-
hibitor, UH15-38, effectively and selectively inhibited IAV-induced necro-
ptosis in alveolar epithelial cells in vivo (Gautam et al., 2024). Z-IETF-fmk, 
the caspase-8 inhibitor can trigger the production of proinflammatory 
cytokines and neutrophil influx without inducing cell death, and it pro-
tects mice against high-dose endotoxin shock (Lentini et al., 2023). The 
small molecule inhibitor VX-765 was shown to inhibit caspase-1 in hu-
man microglia and oligodendrocytes (ODCs) (McKenzie et al., 2018).

These advancements highlight the potential of host-targeting thera-
peutic strategies to modulate immune responses with precision, offering 
promising avenues for treating inflammatory and infectious diseases.

Conclusion

Innate immune sensors such as TLRs, NLRs, RLRs, AIM2, and ZBP1 are 

pivotal components of the innate immune system, essential for detect-
ing intracellular pathogens and initiating immune responses. These re-
ceptors trigger critical pathways that lead to the production of cytokines 
and interferons, which are vital for controlling infections and shaping 
adaptive immunity.

Targeting innate immune sensors presents a promising therapeutic 
strategy for treating infectious and inflammatory diseases. The develop-
ment of specific inhibitors shows the potential to modulate innate im-
mune sensor activity to manage disease. Nevertheless, further research 
is needed to fully understand the range of ligands recognized innate im-
mune sensors and the intricacies of their signaling mechanisms. Advanc-
ing our knowledge in this area will facilitate the development of novel 
therapies targeting innate immune sensors, offering new hope for effec-
tive treatments.

In summary, targeting innate immune sensors have significant thera-
peutic potential, and ongoing research will be crucial in realizing this po-
tential to combat a variety of diseases.
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